Improving Twitter Retrieval by Exploiting Structural Information

نویسندگان

  • Zhunchen Luo
  • Miles Osborne
  • Sasa Petrovic
  • Ting Wang
چکیده

Most Twitter search systems generally treat a tweet as a plain text when modeling relevance. However, a series of conventions allows users to tweet in structural ways using combination of different blocks of texts. These blocks include plain texts, hashtags, links, mentions, etc. Each block encodes a variety of communicative intent and sequence of these blocks captures changing discourse. Previous work shows that exploiting the structural information can improve the structured document (e.g., web pages) retrieval. In this paper we utilize the structure of tweets, induced by these blocks, for Twitter retrieval. A set of features, derived from the blocks of text and their combinations, is used into a learning-to-rank scenario. We show that structuring tweets can achieve state-of-the-art performance. Our approach does not rely upon social media features, but when we do add this additional information, performance improves significantly.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Web Semantics: Science, Services and Agents on the World Wide Web

We propose the application of a novel sub-ontology extraction methodology for achieving interoperability and improving the semantic validity of information retrieval in the medical information systems (MIS) domain. The system offers advanced profiling of a user’s field of specialization by exploiting the concept of sub-ontology extraction, i.e., each sub-ontology may subsequently represent a pa...

متن کامل

A High-Performance Model based on Ensembles for Twitter Sentiment Classification

Background and Objectives: Twitter Sentiment Classification is one of the most popular fields in information retrieval and text mining. Millions of people of the world intensity use social networks like Twitter. It supports users to publish tweets to tell what they are thinking about topics. There are numerous web sites built on the Internet presenting Twitter. The user can enter a sentiment ta...

متن کامل

Improving Twitter Sentiment Classification via Multi-Level Sentiment-Enriched Word Embeddings

Most of existing work learn sentiment-specific word representation for improving Twitter sentiment classification, which encoded both n-gram and distant supervised tweet sentiment information in learning process. They assume all words within a tweet have the same sentiment polarity as the whole tweet, which ignores the word its own sentiment polarity. To address this problem, we propose to lear...

متن کامل

Exploiting Topical Perceptions over Multi-Lingual Text for Hashtag Suggestion on Twitter

Microblogging websites, such as Twitter, provide seemingly endless amount of textual information on a wide variety of topics generated by a large number of users. Microblog posts, or tweets in Twitter, are often written in an informal manner using multi-lingual styles. Ignoring informal styles or multiple languages can hamper the usefulness of microblogging mining applications. In this paper, w...

متن کامل

Exploiting Neural Embeddings for Social Media Data Analysis

In this paper, we describe our microblog realtime filtering system developed and submitted for the Text Retrieval Conference (TREC 2015) microblog track. We submitted six runs for two tasks related to real-time filtering by using various Information Retrieval (IR), and Machine Learning (ML) techniques to analyze the Twitter sample live stream and match relevant tweets corresponding to specific ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012